Ozone-Depleting Substances: Alternatives

ثبت نشده
چکیده

Surrounding the earth at a height of about 25 kilometers is the stratosphere, rich in ozone, which prevents the sun’s harmful ultraviolet (UV-B) rays from reaching the earth. UV-B rays have an adverse effect on all living organisms, including marine life, crops, animals and birds, and humans. In humans, UV-B is known to affect the immune system; to cause skin cancer, eye damage, and cataracts; and to increase susceptibility to infectious diseases such as malaria. In 1974, it was hypothesized that chlorinated compounds were able to persist in the atmosphere long enough to reach the stratosphere, where solar radiation would break up the molecules and release chlorine atoms that would destroy the ozone. Mounting evidence and the discovery of the Antarctic ozone hole in 1985 led to the global program to control chlorofluorocarbons (CFCs) and other ozone-destroying chemicals. In addition to Antarctica, ozone loss is now present over New Zealand, Australia, southern Argentina and Chile, North America, Europe, and Russia. The ozone-depleting chemicals or substances (ODSs) of concern are CFCs, halons, methyl chloroform (1,1,1,-trichloroethane; MCF), carbon tetrachloride (CTC), hydrochlorofluorocarbons (HCFCs), and methyl bromide. The ozone depletion potential (ODP) for these chemicals is shown in Table 1. CFC-11 was assigned an ODP of 1.0; all other chemicals have an ODP relative to that of CFC-11. An ODP higher than 1.0 means that the chemical has a greater ability than CFC-11 to destroy the ozone layer; an ODP lower than 1.0 means that the chemical’s ability to destroy the ozone layer is less than that of CFC-11. In September 1987, the Montreal Protocol on Substances That Deplete the Ozone Layer (the Protocol) was signed by 25 nations and the European Community. The Protocol was the first Ozone-Depleting Substances: Alternatives

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

State of the Environment Queensland 2007

Key findings !" Atmospheric concentrations of ozone depleting substances have decreased as a result of the effectiveness of the Montreal Protocol. !" The global (60°S–60°N) ozone concentration is projected to return to pre-1980 levels by around the middle of the 21st century. !" Antarctic ozone levels are projected to return to pre-1980 levels around 2060–75, which is 10–25 years later than pre...

متن کامل

The Impact of Ozone-Depleting Substances on Tropical Upwelling, as Revealed by the Absence of Lower-Stratospheric Cooling since the Late 1990s

The impact of ozone-depleting substances on global lower-stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower-stratospheric temperature trends has proven more challenging. While the tropical lower-stratospheric cooling observed from 1979 to 1997 has been linked to tropical ozone decreases, those ozone trends cannot be of chemical origin, as active ...

متن کامل

Attribution of observed changes in stratospheric ozone and temperature

Three recently-completed sets of simulations of multiple chemistry-climate models with greenhouse gases only, with all anthropogenic forcings, and with anthropogenic and natural forcings, allow the causes of observed stratospheric changes to be quantitatively assessed using detection and attribution techniques. The total column ozone response to halogenated ozone depleting substances and to nat...

متن کامل

Protection of Stratospheric Ozone: Listing of Substitutes for Ozone- Depleting Substances-n-propyl Bromide in Solvent Cleaning

The Environmental Protection Agency (EPA) determines that n-propyl bromide (nPB) is an acceptable substitute for methyl chloroform and chlorofluorocarbon (CFC)–113 in the solvent cleaning sector under the Significant New Alternatives Policy (SNAP) program under section 612 of the Clean Air Act. The SNAP program reviews alternatives to Class I and Class II ozone depleting substances and approves...

متن کامل

Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century.

By comparing the ozone depletion potential-weighted anthropogenic emissions of N2O with those of other ozone-depleting substances, we show that N2O emission currently is the single most important ozone-depleting emission and is expected to remain the largest throughout the 21st century. N2O is unregulated by the Montreal Protocol. Limiting future N2O emissions would enhance the recovery of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999